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Introduction

Correlation is without doubt the single most impor-
tant parameter in modern portfolio theory, where it
is used to measure the dependence between the
returns on different assets or asset classes. The rule
is simple: low correlation makes for good diversifica-
tion and highly correlated assets or asset classes are
to be avoided. Fifty years after Markowitz this way of
thinking has become so common that nowadays
most people use the terms ‘correlation’ and ‘depen-
dence’ interchangeably. When dealing with the nor-
mal distributions that modern portfolio theory is
based on there is nothing wrong with this. Unfortu-
nately, however, the returns on most assets and
asset classes are not exactly normally distributed
and tend to exhibit a relatively high probability of a
large loss (known formally as ‘negative skewness’)
and/or a relatively high probability of extreme outco-
mes (known as ‘excess kurtosis’). In cases like this
correlation is not a good measure of dependence and
may actually be seriously misleading. Another pro-
blem is that even in cases where correlation is a valid
measure of dependence, people do not seem to fully
appreciate its exact nature. Although it appears quite
surprising at first sight, at least part of the finding
that the correlation between hedge fund returns and
stock market returns is higher in down than in up
markets for example can be attributed purely to tech-
nicalities. Even a normal distribution with a constant
correlation coefficient will exhibit this sort of beha-
viour. In this brief note | will discuss these matters in
some more detail and provide some examples.’

Correlation and non-elliptical
distributions
When it comes to correlation and dependence the
big question is whether the correlation coefficient is
sufficient to describe the complete dependence
structure between two variables. Although beyond
the scope of this note, it can be shown that this is
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Figure 1: Drawings from a bivariate standard normal distribu-
tion with correlation coefficient of 0.5. Taken from
Loretan and English (2000).

only the case when the joint (or bivariate) probability
distribution of both variables is elliptical. Elliptical
simply means that when the joint distribution is vie-
wed from above, the contour lines of the distribution
are ellipses. The best-known member of the family of
elliptical distributions is of course the normal distri-
bution. From statistics 101 we all know that each and
every bivariate normal distribution can be fully
described by just two expectations, two variances
and one correlation coefficient. Figure 1 shows a plot
of a number of drawings from a standard normal
bivariate distribution with correlation coefficient 0.5.
From the plot we clearly see the elliptical contour
shape of the distribution.

Most real-life distributions exhibit positive or
negative skewness and/or some degree of excess
kurtosis. Elliptical distributions are therefore nothing
more than an ideal type that is rarely encountered in
practice. Elliptical distributions, however, are also
the easiest distributions to work with mathematical-
ly. As a result, the assumption of normality has beco-
me the single most important assumption in econo-
metrics, which has left us in the awkward situation
where 95% of the econometric tools we have at our
disposal assume a distribution that is hardly ever
observed in reality.2 As said, if the joint distribution
is not elliptical, the correlation coefficient is not a
good measure for the dependence structure between
the two variables involved. An example is provided in
figure 2, which shows plots of a large number of dra-
wings from a normal (on the left) and a non-elliptical
(on the right) bivariate distribution. Both plots look
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Figure 2: Drawings from a normal (left) and non-elliptical (right) bivariate distribu-

tion, both with the same correlation coefficient. Taken from Embrechts et

al. (1999).
very different, implying a completely different de-
pendence structure. The so-called ‘tail dependence’
in the non-elliptical distribution is quite pronounced
as it shows a clear tendency to generate extreme
values for both variables simultaneously. Surprising-
ly, however, both these distributions have the same
correlation coefficient, which immediately shows
how dangerous it can be to rely on just the correla-
tion coefficient to measure dependence. Another
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Figure 3: Drawings from two bivariate distributions with a different dependence
structure but the same correlation coefficient. Taken from Embrechts et
al. (2002).
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example can be found in figure 3. Again, despite the
fact that in the distribution on the right there is a
much stronger tendency for extreme values to go
together, both these distributions have the same cor-
relation coefficient.

In the above context two other points are impor-
tant as well. First, if two variables are both normally
distributed this does not automatically mean that
their joint distribution is normal as well. This is only
the case if we assume that the joint distribution is
elliptical. If not, there are an infinite number of biva-
riate distributions that fit this description. Second,
we all know that because the correlation coefficient
equals the normalized covariance, it will always lie
between +1 and -1. However, whether it is actually
possible for the correlation coefficient to take on
these extreme values is another matter. For non-ellip-
tical distributions the actually attainable interval
might well be smaller. For some distributions the
attainable interval can be very small, say between
-0.1and +0.2 for example. If this was indeed the case,
finding a correlation coefficient of 0.2 and conclu-
ding that there was only very weak dependence
between both variables involved would be a terrible
mistake as both variables in question are actually
perfectly dependent.

The above emphasizes how limited the available
econometric toolbox still is and how preconditioned
we all have become on the assumption of normality.
Fortunately, this is changing. More and more econo-
metric research is turning towards non-normal distri-
butions. Also, empirical research no longer aims to
show that real-life distributions can be assumed to
be normal after all. Partly driven by the fast develop-
ment of the risk management profession, we seem to
be taking things much more the way they really are,
i.e. not normally distributed.

Conditional correlations
One way to deal with the problem mentioned above is
to calculate what are known as ‘conditional correla-
tions’. This means splitting up the available data
sample based on the size or the volatility of one or
both of the variables involved and subsequently cal-
culate correlation coefficients for these sub-samples
separately. This technique has been used to study the
correlation between different assets and asset classes
in up and down markets for example. The conclusion
is always the same: during major market events corre-
lations go up dramatically. Based on this many inve-
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stors have come to believe that during times of large
moves in financial markets the benefits of (interna-
tional) diversification are dramatically reduced.

In a recent book, Lhabitant (2002, p. 171) uses the
same technique to study the dependence between
hedge funds and the stock market. Using data over
the period January 1994 to August 2001 he finds that
the correlation between most hedge fund indices
and US and European equity is much higher in down
markets than in up markets. Overall (as measured by
the CSFB/Tremont index), the correlation between
hedge funds and US equity is 0.18 in up markets but a
whopping 0.53 in down markets. The biggest diffe-
rences between up and down market correlations are
observed in convertible arbitrage, emerging markets,
and event driven strategies.

Similar results can also be found in Schneeweis and
Spurgin (2000) and Jaeger (2002, p. 124).

At first sight, findings like the above seem quite
worrisome. Fortunately, however, this need not
necessarily be the case. It is not difficult to show that
conditional correlations should actually display
some of the observed behaviour for purely technical
reasons. Suppose we had two random variables X
and Y with a bivariate standard normal distribution
and a correlation coefficient of 0.5, just like the one
shown in figure 1. Now suppose we split the range of
possible outcomes of X into 10 different segments
such that X had exactly 10% chance ending up in eit-
her one of these segments. Subsequently, we made a
large number of drawings from the bivariate distri-
bution and then calculated the conditional correla-
tion for every segment separately. This would produ-
ce the results in table 1. From the table we clearly see
that the conditional correlation in segment 1and 10

Table 1: Correlations bivariate standard normal distribution
conditioned on outcome range.

Segment  Range Cond. Cond.
Correlation Variance

1 <-1.282 0.2310 0.1690
2 -1.282 /-0.842 0.0725 0.0159
3 -0.842 /-0.524 0.0526 0.0083
4 -0.524 /-0.253 0.0451 0.0061
5 -0.253 / 0.000 0.0421 0.0053
6 0.000 / 0.253 0.0421 0.0053
7 0.253 / 0.524 0.0451 0.0061
8 0.524 / 0.842 0.0526 0.0083
9 0.842 /1.282 0.0725 0.0159
10 >1.282 0.2310 0.1690

is several times higher than in segment 5 or 6, sugge-
sting that large drawings are much more correlated
than smaller ones. This is not an empirical observa-
tion though, but a purely technical matter as the
actual correlation coefficient is fixed.3

It turns out that what is important is the ratio of
the conditional variance of X, i.e. the variance within
the chosen segment, and the overall variance of X,
i.e. the variance calculated over all segments. In our
example, the former is given in the last column of
table 1 while the latter equals 1 by assumption. The
higher the conditional variance relative to the overall
variance, the higher the conditional correlation we
will find. This means that when we move from the
normal distribution to distributions with significant
skewness and/or excess kurtosis, the effect may be
much stronger. When a distribution is skewed it
means that compared to the normal distribution it
has a long tail to the left or right. This long tail will
raise the conditional variance relative to the overall
variance and therefore produce a higher conditional
correlation. The same happens with excess kurtosis,
i.e. when the distribution in question has ‘fatter’
tails than the normal distribution. When a distribu-
tion is sufficiently skewed or leptokurtic this may
raise the conditional variance so much that, unlike in
the above example, the conditional correlation beco-
mes higher than the unconditional correlation. Since
this is a purely technical matter, however, one would
be wrong to conclude from this that more extreme
movements are more correlated than overall move-
ments.

Given the above, it is interesting to take another
look at Lhabitant’s conditional correlations mentio-
ned before. In a recent paper Brooks and Kat (2001)
studied a large number of hedge fund indices, inclu-
ding those studied by Lhabitant. From their study it
is clear that the indices that exhibit the biggest diffe-
rence between up and down market correlation in
Lhabitant’s study also happen to be the indices that
exhibit the highest levels of negative skewness and
excess kurtosis. This strongly suggests that part of
Lhabitant’s findings is attributable to technicalities.
How much is real is very hard to determine, however,
as to do so we would have to know each index’s
exact distribution so we could calculate what condi-
tional correlations to expect on purely technical
grounds.4

Another interesting example of the dangers of
conditional correlations can be found in research
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that aims to find out whether correlation is higher in
more volatile times. This case is quite straightfor-
ward because the conditioning is done on the condi-
tional variance itself. We therefore know in advance
that the higher we set the threshold of what consti-
tutes high volatility, the more likely we are to find a
high conditional correlation. Let’s return to the biva-
riate standard normal distribution with a fixed corre-
lation of 0.5. Suppose we made a large number of
drawings from this distribution, sorted them on
whether the absolute value of X was higher or lower
than 0.674 and subsequently calculated the condi-
tional correlations of the two resulting sub-samples.

Table 2: Correlations bivariate standard normal distribution
conditioned on sub-sample volatility.

Variance greater than Cond. Correlation

1.8 0.615
1.7 0.610
1.6 0.603
1.5 0.595
1.4 0.585
1.3 0.575
1.2 0.564
1.1 0.553
1.0 0.541

Doing so, we would find a conditional correlation of
0.21 for the small and 0.62 for the high values samp-
le. Many people would be inclined to conclude from
this that correlation differs dramatically between
volatile and quiet periods. However, this would clear-
ly be incorrect as the correlation is constant by con-
struction. If we sorted the data directly on the
variance of X we would get the results displayed in
table 2. From the table we clearly see how the condi-
tional correlation rises with the variance threshold,
again suggesting that correlation is higher in more
volatile markets while by construction it is not.

Conclusion

The above are only simple examples but they make it
painfully clear how misleading (conditional) correla-
tion can be. Low (high) correlations do not necessarily
imply low (high) dependence. We therefore need other
methods to investigate whether for example more
extreme movements in financial markets are indeed
more highly correlated than overall movements.
Given the complexity of real-life distributions, howe-
ver, such methods are likely to be a lot more compli-
cated than our old friend the correlation coefficient.
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Footnotes

1 ldo not claim any originality with respect to the ideas or
even the examples discussed in this note. More details
can be found in Boyer et al. (1999), Loretan and English
(2000), Embrechts et al. (1999, 2002), or Malevergne and
Sornette (2002) and the references therein.

2 Note that this is somewhat of an exaggeration as strictly
speaking most econometric tools only rely on asymptotic
convergence to normality and not on finite sample nor-
mality.

3 The basic problem here is that the correlation coefficient
is dependent on the marginal distributions of the varia-
bles in question. Conditioning changes the marginal dis-
tributions and thereby changes the correlation coeffi-
cient.

4 Amin and Kat (2002) find that when forming portfolios of
hedge funds, stocks and bonds the negative skewness of
the portfolio return distribution increases substantially
when the hedge fund allocation is increased. This sugge-
sts that a significant part of the observed effect is indeed
real.
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