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Motivation: the SPX & VIX joint calibration problem
History of SPX & VIX
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▶ SPX: Standard and Poor’s 500, the benchmark index representing the performance of 500
large U.S. companies.

▶ VIX: the "fear" index that reflects the market’s expectation for the volatility of the SPX
over the next 30 days.
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Motivation: the SPX & VIX joint calibration problem
SPX & VIX derivatives and general idea of fitting

▶ SPX derivatives have always played a crucial role in financial markets.

▶ VIX derivatives allow volatility trading strategies, such as hedging volatility risk,
speculating on market movements, and enhancing portfolio diversification.

▶ A model that can replicate the observed market prices of SPX and VIX derivatives.

▶ This process typically involves two steps

1. Model: Find a model with parameters that can be efficiently simulated numerically (for
pricing and calibration).

2. Calibration: Adjust the model parameters to minimize the error between model outputs
and observed market prices (such as derivative prices or implied volatilities).
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Motivation: the SPX & VIX joint calibration problem

▶ Both SPX and VIX are important. And in practice, VIX is constructed from prices of SPX
derivatives.

▶ The two indexes should be modeled consistently:

1. ONE model to jointly calibrate and fit implied volatility (thus also derivatives price) of SPX
and VIX

2. VIX: expected volatility of the SPX over the next 30 days → SPX should be fitted up to 30
days ahead of VIX

This is called the (SPX & VIX) joint calibration problem
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Motivation: the SPX & VIX joint calibration problem
unconventional stochastic volatility models for the joint calibration problem

Stochastic volatility models were introduced around the 1990s and have been widely used in
finance (e.g., the Heston model). In the joint calibration problem, some unconventional
stochastic volatility models have been considered.

(I) Jump diffusion (discontinuous spot price):

▶ (Cont and Kokholm, 2013): one of the earliest successful attempts at joint calibration
▶ (Baldeaux and Badran, 2014): 3/2 model plus jumps

(II) Multi-factors (volatility depending on multiple processes):

▶ (Fouque and Saporito, 2018): Heston model with stochastic vol of vol
▶ (Rømer, 2022): multi-factor Markovian volatility model
▶ (Guyon and Lekeufack, 2023): path-dependent volatility

(III) Rough volatility (non-Markovian):

▶ (Gatheral, Jusselin, and Rosenbaum, 2020): quadratic rough Heston
▶ (Alessandro, Sergio, Scotti, et al., 2024): rough Heston with added Hawkes jumps
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Motivation: the SPX & VIX joint calibration problem

▶ It is widely believed (until recently) that conventional one-factor, continuous Markovian
stochastic volatility models are unable to jointly calibrate the SPX & VIX volatility
surfaces.

▶ Our main motivation is thus to find a model such that:

1. It is a one-factor continuous Markovian stochastic volatility model, i.e. without using
multiple-factors, jumps, roughness.

2. It allows fast pricing, enabling an efficient calibration.

3. It can jointly calibrate and fit SPX & VIX volatility surfaces.
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Motivation: the SPX & VIX joint calibration problem
the Polynomial Ornstein-Uhlenbeck volatility model

Our model: the Polynomial Ornstein-Uhlenbeck (OU) volatility model.

1. It is a one-factor continuous Markovian stochastic volatility model, i.e. without using
multiple-factors, jumps, roughness.

2. It allows fast pricing of VIX derivatives by integrating against a Gaussian density and fast
pricing of SPX derivatives by Fourier inversion.

3. It can jointly calibrate and fit SPX & VIX volatility surfaces.
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SPX & VIX joint calibration
a quick illustration of the model
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Joint calibration of SPX IV, VIX IV,
and VIX futures on 23 October 2017
via Fourier for SPX and numerical
integration for VIX. The blue and
red dots are market bid/ask, with
the green lines are model fit. The
vertical bar represents the VIX
futures
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Polynomial Ornstein-Uhlenbeck volatility models

dSt = StσtdBt , B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) =
∞∑

k=0
pkxk ,

dXt = (a + bXt)dt + cdWt .

▶ p is either a polynomial (or an exponential function), Xt is a standard Ornstein-Uhlenbeck
process.

▶ 1. This includes the following models:
1. Stein-Stein/Schöbel Zhu model: p(x) = x ,
2. One-factor Bergomi model: p(x) = ex ,
3. Quintic Ornstein-Uhlenbeck volatility model: p(x) = p0 + p1x + p3x3 + p5x5.

▶ 2. This enables the fast pricing of VIX and SPX derivatives used for the joint calibration.
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Fast pricing of VIX derivatives: Explicit Formula
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Fast pricing of VIX derivatives

One major advantage of the Polynomial Ornstein-Uhlenbeck model is the explicit expression of
the prices of VIX derivatives:

An explicit expression for the VIX derivatives price
Given the maturity T , there exists a polynomial qT (x) such that, for all payoff functions Φ, the
VIX derivative price is given by

E [Φ(VIXT )] = 1√
2π

∫
R

Φ
(√

qT (x)
)

e−x2/2dx .

This integral can be computed efficiently using numerical techniques → fast pricing of VIX
derivatives
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Fast pricing of SPX derivatives: Fourier Inversion
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Fast pricing of SPX derivatives
Polynomial Ornstein-Uhlenbeck volatility models

dSt = StσtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) =
∞∑

k=0
pkxk ,

dXt = (a + bXt)dt + cdWt .

▶ Monte Carlo method: pathwise numerical simulation: Xt ⇒ σt ⇒ St (=SPX).

▶ Fourier method: fast pricing by computing the characteristic function and then applying
Fourier inversion to obtain a pricing formula.
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Affine structure
Stein-Stein/Schöbel-Zhu model

dSt = StσtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) = x , p(x) =
∞∑

k=0

dXt = (a + bXt)dt + cdWt .

▶ The Stein-Stein model is affine in (1,X ,X 2) such that the characteristic function of log S
is given by

E
[

exp
(

iu log(ST
St

)
)

|Ft

]
= exp

(
ψ0(t) + ψ1(t)Xt + ψ2(t)X 2

t
)
, t ≤ T ,

where u ∈ R, (ψ0, ψ1, ψ2) is the solution to a standard system of finite dimensional Riccati
equations → existence and uniqueness are well-known
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The affine structure (Taylor expansion)
polynomial Ornstein-Uhlenbeck volatility models

dSt = StσtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) =
∞∑

k=0
pkxk ,

dXt = (a + bXt)dt + cdWt .

▶ For a general p, we expect the model to be affine in (1,X , · · · ,X n, · · · ) with the Ansatz
for the characteristic function:

E
[

exp
(

iu log(ST
St

)
)

|Ft

]
= exp

( ∑
k≥0

ψk(T − t)X k
t

)
, t ≤ T .

▶ Similar expansions of the characteristic function as a power series have also appeared in
recent works of (Cuchiero, Svaluto-Ferro, and Teichmann, 2023; Friz, Gatheral, and
Radoičić, 2022; Abi Jaber and Gérard, 2024).
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Characteristic function and infinite-dimensional Riccati equations

E
[

exp
(

iu log(ST
St

)
)

|Ft ] = exp
( ∑

k≥0
ψk(T − t)X k

t

)
. (1)

The (infinite dimensional) vector ψ(t) solves a system of Ricatti equations:

ψ′(t) = P(t) + Q(t)ψ(t) + Kψ(t) ∗ Kψ(t). (2)

▶ We establish theoretical results to build (1) and numerical scheme to solve infinite
dimensional Riccati equations (2).

▶ Solve Ricatti equations (2) → Compute characteristic function by (1) → Pricing formula
based on Fourier inversion → Fast pricing of SPX derivatives.
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Fourier inversion for the fast pricing of SPX derivatives
Quintic Ornstein-Uhlenbeck volatility models

dSt = StσtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) = p0 + p1x + p3x3 + p5x5, p0, p1, p3, p5 ≥ 0,
dXt = αϵ−1Xtdt + ϵαdWt .

▶ We choose the following parameters: ρ = −0.65, (p0, p1, p3, p5) = (0.01, 1, 0.214, 0.227),
ξ0(t) = 0.025, g0(t) =

√
ξ0(t)

E[p(Xt )2] , α = −0.6, ε = 1/52, which are typical values one can
expect from calibrating the model to SPX & VIX volatility surfaces.

Shaun (Xiaoyuan) Li |



17

Fourier inversion for the fast pricing of SPX derivatives
Quintic Ornstein-Uhlenbeck volatility models

SPX implied volatility of different maturities in the quintic Ornstein-Uhlenbeck model, computed with our algorithm with different
level M. Dotted red lines are Monte-Carlo 95% interval computed with 500,000 simulations and n = 10, 000 number of steps
per maturity slice.
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Fourier inversion for the fast pricing of SPX derivatives
one-factor Bergomi model

dSt = StσtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) = exp(1
2ηx),

dXt = αϵ−1Xtdt + ϵαdWt , g0(t) =
√
ξ0(t) exp

(
−1

4η
2E(X 2

t )
)
.

▶ We choose the parameters: ρ = −0.7, ε = 1/52, α = −0.7, η = 1.2, ξ0(t) = 0.025 for the
numerical experiment, which are typical values one can expect from calibrating the model
to SPX volatility surface.
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Fourier inversion for the fast pricing of SPX derivatives
one-factor Bergomi model

SPX implied volatility of different maturities in the one-factor Bergomi model, computed with our algorithm with different level
M. Dotted red lines are Monte-Carlo 95% interval computed with 500,000 simulations and n = 10, 000 number of steps per
maturity slice.
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SPX & VIX: from fast pricing to joint calibration
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SPX & VIX calibration
model parameters and error

Now, we are able to perform a (fast) joint calibration based on our choice of Polynomial
Ornstein-Uhlenbeck volatility models and fast pricing method.

▶ Step 1: We fix the model by choosing a set of free parameters Θ to calibrate.

▶ Step 2: Given a set of parameters Θ, we are able to do the fast pricing of SPX & VIX
derivatives prices and implied volatility.

▶ Step 3: We fix an error function R, which evaluates the difference between the model and
the real market data by the derivatives prices and implied volatility.

The joint calibration is performed by using fast pricing to find parameters Θ to
minimize the error R.
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SPX & VIX calibration
Quintic Ornstein-Uhlenbeck volatility models

In the Quintic Ornstein-Uhlenbeck volatility models, we choose Θ := {p0, p1, p3, p5, ρ, α}, and
the error function R as the sum of root mean squared error (RMSE) of future price and implied
volatility.

Then the calibrated parameters are (p0, p1, p3, p5) = (0.0202, 1.3332, 0.0578, 0.0071),
ρ = −0.6763, α = −0.6821. And the numerical illustration for the calibrated parameters:

Quintic Ornstein-Uhlenbeck model (green lines) jointly calibrated to the SPX and VIX smiles (bid/ask in blue/red) on 23 October
2017 via Fourier using the Nelder-Mead optimization algorithm. The truncation level of the Riccati solver is set at M = 32.
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Conclusion

We introduced Polynomial Ornstein-Uhlenbeck volatility model, which enables SPX & VIX
fast pricing and joint calibration, thereby supporting hedging, trading and enhancing
portfolio diversification from both the spot price (SPX) and volatility (VIX) perspectives.

▶ It is a conventional one-factor continuous Markovian stochastic volatility model.

▶ It allows fast joint calibration by

1. fast pricing of VIX derivatives: integrating an explicit formula against Gaussian density

2. fast pricing of SPX derivatives: solving Riccati equations which is used to compute the
characteristic function, then applying the Fourier inversion

▶ It can jointly calibrate and fit SPX & VIX volatility surfaces.
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Appendix
Pricing formula for the VIX

VIX2
T = 1002

∆

2deg(p)∑
i=0

βi(T )X i
T = q(XT ),

with (p ∗ p)k =
∑k

j=0 pjpk−j the discrete convolution,
(k

i
)

the binomial coefficient, and

βi(T ) =
2deg(p)∑

k=i
(p ∗ p)k

(
k
i

) ∫ ∆

0
g2

0 (T + t)ebktE
[
Y k−i

t
]

dt,

where Yt = a
∫ t

0 e−budu + c
∫ t

0 e−budWu is Gaussian with explicit moments.

E [Φ(VIXT )] = E
[
Φ

(√
q(XT )

)]
= 1√

2π

∫
R

Φ
(√

q(σXT x + mXT )
)

e−x2/2dx .

with mXT being the expectation of XT , σ2
XT

being the variance of XT .
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Appendix
Infinite dimensional Ricatti equations

E
[

exp
(

iu log(ST
St

)
)

|Ft ] = exp
( ∑

k≥0
ψk(T − t)X k

t

)
. (3)

ψ′
k(t) = 1

2 (−u2 − iu)g2
0 (T − t)(p ∗ p)k + bkψk(t) + a(k + 1)ψk+1(t)

+ c2(k + 2)(k + 1)
2 ψk+2(t) + iucρg0(T − t)(p ∗ ψ̃(t))k

+ c2

2 (ψ̃(t) ∗ ψ̃(t))k , ψk(0) = 0, ψ̃k = (k + 1)ψk+1, k ∈ N.

(4)
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iu log(ST
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Appendix
Pricing formula of SPX derivatives by Fourier inversion

Given a maturity T and a strike K , we aim to compute the call option price at time t from the
characteristic function.

We adopt the pricing formula suggested from Lewis (2001):

Ct(St ,K ,T ) := E
[
(ST − K )+|Ft

]
= St − K

π

∫ ∞

0
Re

[
e(iu+ 1

2 )ktφ

(
u − i

2

)]
du

u2 + 1
4
, (5)

where kt := log(K/St) is the log-moneyness and φ(u) = E
[

exp
(

iu log( ST
St

)
)

|Ft ] is the
characteristic function.
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Appendix
SPX & VIX calibration: model and error

Take Quintic Ornstein-Uhlenbeck volatility model for example: we fix ε = 1/52, and the
forward variance curve ξ0(t) comes directly from market data. There are six model parameters:

Θ := {p0, p1, p3, p5, ρ, α}

To calibrate our model, we solve the optimisation problem involving sum of root mean squared
error (RMSE):

min
Θ

c1

√∑
i,j

(
σΘ

spx(Ti ,Kj) − σmkt
spx (Ti ,Kj)

)2 + c2

√∑
i,j

(
σΘ

vix(Ti ,Kj) − σmkt
vix (Ti ,Kj)

)2 (6)

+c3

√∑
i

(
F Θ

vix(Ti) − F mkt
vix (Ti)

)2

 . (7)

Ti : maturity, Kj : strike, σ : implied volatility, F : future price, mkt: real market, Θ : our
model, c1, c2, and c3: positive weights.
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